Run databases and data analytics in a consistent way across clouds to accelerate delivery of cloud-native applications
Databases and data analytics provide methods for ingesting, storing, processing, and analyzing datasets from a variety of sources for use cases such as, mobile and ecommerce applications, AI/ML, business intelligence, and more.
Potential executional challenges for databases and data analytics workloads on containers and Kubernetes.
Kubernetes Operators simplify and automate the deployment, scaling, and lifecycle management of containerized databases and data analytics on Red Hat OpenShift. This helps enable DevOps, and allows Database Administrators (DBAs) to focus on more strategic tasks such as controlling user access and security.
Secure deployment, operations, and portability in a consistent way across the hybrid cloud. Run containerized databases and data analytics in the same manner as the other components of the cloud-native application(s).
Red Hat has strategic partnerships and integrations with key database and data analytics ISVs such as Microsoft, Cloudera, MongoDB, Crunchydata, Couchbase, Starburst, along with Red Hat’s AMQ Streams (Kafka on Kubernetes) using Kubernetes Operators to help make our mutual customers successful.
Simpler way to buy and deploy container-based software on OpenShift, including databases and data analytics workloads.
Complementary capabilities for efficiently running databases and data analytics on OpenShift.
Scalable and resilient software-defined storage for running containerized workloads, including databases and data analytics.
Frameworks, integration, runtimes, programming languages. E.g. Red Hat AMQ streams (Apache Kafka on Kubernetes)
Robust and secure foundation for running databases and data analytics workloads on Red Hat OpenShift.
Explore the Kubernetes operators from our database & data analytics ISV ecosystem at Red Hat Marketplace.